AIMS 2014, Brno, Czech Republic, June 30, 2014

#### TrAdeCIS: Trade-off-based Adoption Methodology for Cloud-based Infrastructures and Services

Radhika Garg, Burkhard Stiller

<sup>1</sup> Department of Informatics IFI, Communication Systems Group CSG, University of Zürich UZH garg|stiller@ifi.uzh.ch



Motivation/Problem Methodology Outline Illustration Summary



#### **Motivation**



## Motivation

- Adoption of cloud-based solutions for IT requirements is based on:
  - Technical factors, e.g., availability, response time
  - Business oriented objectives, e.g., cost reduction, return of investment
- Decision of adoption is difficult:
  - Multiple selection criteria with different priority
  - Presence of more than one alternative solutions
- □ Gaps to be filled:
  - Methodology for deciding best available solution
  - Quantitative validation of decision made



Trade-off-based Adoption Methodology for Cloud-based Infrastructures and Services



#### **Problem Statement**

To design a adoption methodology, that

- Identifies relevant factors for evaluating alternative solutions
- Ranks alternative solutions based on
  - Technical factors and business objectives
- Establishes a trade-off-based decision
  - As relevant factors have different priority
- □ To establish a trade-off-based decision
  - Difficult to establish a relation between the returns of the decision made and priorities of the selecting criteria

#### **TrAdeCIS**



TOPSIS: Technique for Order of Preference by Similarity to Ideal Solution

ANP: Analytical Network Process

© 2014 UZH, CSG@IFI



#### **TrAdeCIS**



TOPSIS: Technique for Order Preference by Similarity to Ideal Solution ANP: Analytic Network Process



## **Survey Based Illustration**

- Survey done with 10 organizations
  - Plans to or have adopted cloud-based solutions for IT requirements
  - Follow ad-hoc methods for making a decision
  - Quantitative approach is not available
- □ Illustrating the methodology with a use-case
  - Health insurance, small-sized company
  - Plans to adopt cloud-based services for fulfilling infrastructure requirements







#### **TrAdeCIS**



TOPSIS: Technique for Order Preference by Similarity to Ideal Solution ANP: Analytic Network Process



# **TOPSIS (1)**

- Assumes that *m* alternatives, *n* factors, the weight of each option is known, represented as matrix *X*.
- X is normalized to form normalized decision matrix as X\*. New element is,

$$\mathcal{F}_{ij} = \frac{\chi_{ij}}{\sum_{\substack{1 \le i \le m \\ 1 \le j \le n}} \chi^2_{ij}}$$

 Weighted normalized matrix is constructed, by multiplying each column of X\* by its associated weight, w<sub>ij</sub>. New element is,

$$\mathcal{V}_{ij} = \mathcal{W}_{ij} \times \mathcal{V}_{ij}$$

# **TOPSIS (2)**

- □ Determine the ideal positive  $A^* = [V_1^*, V_n^*]$ , where  $V_j = \max(V_{ij})$ , if  $j \in J$ or  $\min(V_{ij})$  if  $j \in J'$  and negative solution  $A' = [V_1', V_n']$ , where  $V_j' = \min(V_{ij})$ if  $j \in J$  or  $\max(V_{ij})$  if  $j \in J'$ .
- □ Determine the separation from the ideal solution for every alternative for  $1 \le i \le m$ .
  - Distance from positive ideal solution is  $S_i^* = \sqrt{\sum (V_j^* V_{ij})^2}$
  - Distance from negative ideal solution is  $S_i = \sqrt{\sum (V_j V_{ij})^2}$
- □ Determine the relative closeness,  $C_i^* = \frac{S_i^{'}}{S_i^* + S_i^{'}}$ , to the ideal solution.
  - Highest rank is given to alternative having  $C_i^*$  closest to 1.

#### **Selection of Technical Parameters**

#### Selection of relevant factors

- Based on current IT requirements
- Based on business goals and policies

#### Assigning priorities to factors

- Based on criticality of business goals
  - E.g., Level of risk associated with vendor-lock in

Assigning ranking of each Alternative (here A1, A2, A3)

For every factor

#### **Weighted Normalized Decision Matrix**

|                     | A1    | A2    | A3    |
|---------------------|-------|-------|-------|
| Functionality       | 2.001 | 1.710 | 1.410 |
| Privacy             | 4.489 | 1.995 | 4.988 |
| Availability        | 4.460 | 3.342 | 2.230 |
| Scalability         | 2.340 | 3.745 | 2.340 |
| Compliance          | 1.068 | 2.136 | 3.208 |
| Storage<br>Location | 1.178 | 0.388 | 2.356 |
| Simplicity          | 0.481 | 0.240 | 0.843 |

 Positive Ideal solution is set of maximum values: {2.001, 4.989, 4.460, 1.068, 2.356, 0.843}

 Negative Ideal solution is the set of minimum values: {1.410, 1.995, 2.230, 3.745, 3.208, 0.388, 0.240}

#### Distance of Alternatives from Ideal Solutions

# Distance from the Positive Ideal Solution

|                     | A1    | A2    | A3     |
|---------------------|-------|-------|--------|
| Functionality       | 0.000 | 0.073 | 0.3111 |
| Privacy             | 0.201 | 8.883 | 0.000  |
| Availability        | 0.000 | 0.553 | 2.166  |
| Scalability         | 0.000 | 1.625 | 0.000  |
| Compliance          | 0.000 | 0.531 | 2.133  |
| Storage<br>Location | 0.723 | 1.999 | 0.000  |
| Simplicity          | 0.117 | 0.324 | 0.000  |
| S* <sub>i</sub>     | 1.009 | 3.740 | 2.147  |



#### **Ranking the Alternative Solutions**

Relative Closeness of the alternative to the ideal solution: {0.2363, 0.071, 0.2361}



- A1 and A3 are closer to the best solution as compared to A2
- Ranking of alternatives as per the technical factors
  A1, A3, A2

#### **TrAdeCIS**



TOPSIS: Technique for Order Preference by Similarity to Ideal Solution ANP: Analytic Network Process



#### Selection of Business Performance Metrics (BPM)

#### Identify BPMs for measuring returns

- Measures Business Value
- Identify relative importance of BPMs
  - E.g., Cost reduction is twice more important than migration time

| BPMs                        | Migration<br>Time | Cost<br>reduction | Workload vs.<br>Utilization |
|-----------------------------|-------------------|-------------------|-----------------------------|
| Migration Time              | 1                 | 1/2               | 1/3                         |
| Cost Reduction              | 2                 | 1                 | 1/3                         |
| Workload vs.<br>Utilization | 3                 | 3                 | 1                           |

## **Analytic Network Process (ANP)**

- ANP makes a pair wise comparison of all nodes with respect to objective
- Eigen vector is calculated for local priorities for all connections



- The unweighted super matrix is normalized to calculate weighted super matrix
- The limit matrix is calculated, which is the weighted super matrix raise to the power of k+1, where k is an arbitrary positive integer

#### **Weighted Super Matrix**

|                                | Returns | Migration<br>Time | Cost<br>Reduction | Workload vs.<br>Utilization | A1 | A3 |
|--------------------------------|---------|-------------------|-------------------|-----------------------------|----|----|
| Returns                        | 1       | 0                 | 0                 | 0                           | 0  | 0  |
| Migration<br>Time              | 16      | 1                 | 0                 | 0                           | 75 | 13 |
| Cost<br>Reduction              | 25      | 0                 | 1                 | 0                           | 13 | 75 |
| Workload<br>vs.<br>Utilization | 59      | 0                 | 0                 | 1                           | 13 | 75 |
| A1                             | 0       | 50                | 20                | 67                          | 1  | 0  |
| A3                             | 0       | 50                | 80                | 33                          | 0  | 1  |

#### **Limit Matrix for Returns**

|                                | Returns | Migration<br>Time | Cost<br>Reduction | Workload vs.<br>Utilization | A1 | A3 |
|--------------------------------|---------|-------------------|-------------------|-----------------------------|----|----|
| Returns                        | 0       | 0                 | 0                 | 0                           | 0  | 0  |
| Migration<br>Time              | 0       | 18                | 18                | 18                          | 0  | 0  |
| Cost<br>Reduction              | 0       | 26                | 26                | 26                          | 0  | 0  |
| Workload<br>vs.<br>Utilization | 0       | 6                 | 6                 | 6                           | 0  | 0  |
| A1                             | 36      | 0                 | 0                 | 0                           | 18 | 18 |
| A3                             | 64      | 0                 | 0                 | 0                           | 32 | 32 |
|                                |         |                   |                   |                             |    |    |





TOPSIS: Technique for Order Preference by Similarity to Ideal Solution ANP: Analytic Network Process



#### **Discussion on Trade-off-Based Decision**

- A1 gained higher rank in TOPSIS with respect to technical factors
- □ A3 gained higher ranking in ANP with respect to BPM
- □ For trade-offs establishment
  - Priorities of BPMs are changed and seen if A1 is selected with ANP
  - If A1 is chosen with ANP, then best technical solution is chosen at a trade-off of return value in terms of BPMs

## Summary

Quantitative approach for decision making

- Need identified by survey with organizations
- Existing methods are ad-hoc
- Based on proven multi attribute decision algorithms
- TrAdeCIS enables comparative evaluation of alternatives
- Being amenable to automation, complex arrays of criteria inputs can be handled

#### **Thank You, for Your Attention!**



#### References

 S. Zardari and R Bahsoon. Cloud Adoption: A Goal-Oriented Requirements Engineering Approach, Proc. 2nd Intl. Workshop of Software Eng. for Cloud Computing (SECLOUD'11), pp. 29-35. 2011.
 P. Saripalli, G. Pingalli. MADMAC: Multiple Attribute Decision Methodology for Adoption of Clouds. In Cloud Computing (CLOUD), 2011 IEEE International Conference on Cloud Computing, pp. 316-323, IEEE.
 K. Yoon and C. Hwang. Multiple Attribute Decision Making: An Introduction. SAGE, 1995.
 H. Deng, C. Yeh, and R. Wills. Inter-company Comparison Using Modified TOPSIS with Objective Weights. Computers and Operational Research. Vol. 27, No. 10, pp. 963- 973, 2000.
 T. Saaty. Fundamentals of the Analytic Network Process-dependence and Feedback in Decision-making with a Single Network. Journal of Systems Science and Systems Engineering. Vol. 13, No. 2, pp.129-157, 2004.